organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Methyl-N'-(2-oxoindolin-3-ylidene)benzene-1-sulfonohydrazide

Alexandra de Souza Fonseca,^a Tomás Garcia Storino,^a Vanessa Santana Carratu,^a* Aline Locatelli^b and Adriano Bof de Oliveira^c

^aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96201-900, Rio Grande-RS, Brazil, ^bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Campus, 97105-900, Santa Maria-RS, Brazil, and ^cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000, São Cristóvão-SE, Brazil Correspondence e-mail: adriano@daad-alumni.de

Received 27 October 2011: accepted 4 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.113; data-to-parameter ratio = 20.2.

In the title compound, $C_{15}H_{13}N_3O_3S$, the C-S-N(H)-N linkage is non-planar, the torsion angle being $-65.12 (13)^{\circ}$ and the S atom showing a tetrahedral environment. The compound has two almost planar fragments linked to the S atom: the isatin-derivative fragment $[(C_8H_5NO)N-N(H)-]$ and the tolyl fragment $[C_7H_7-]$ have maximum deviations from the mean plane through the non-H atoms of 0.0813 (13) and 0.0094 (16) Å, respectively, and make an interplanar angle of 80.48 (3)°. In the crystal, molecules are connected into inversion dimers via pairs of N-H···O hydrogen bonds. Additionally, the molecular structure is stabilized by an intramolecular N-H···O hydrogen bond.

Related literature

For the synthesis of isatin-3-tosylhydrazone, see: Cava et al. (1958). For the antifungal and antibacterial properties of isatin derivatives, including the title compound, see: Chohan et al. (2004).

Experimental

Crystal data

C ₁₅ H ₁₃ N ₃ O ₃ S	V = 1439.18 (5) Å ³
$M_r = 315.35$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 14.9050 (3) Å	$\mu = 0.24 \text{ mm}^{-1}$
b = 5.7849 (1) Å	T = 293 K
c = 17.8112 (3) Å	$0.56 \times 0.16 \times 0.10 \text{ mm}$
$\beta = 110.427 \ (1)^{\circ}$	

Data collection

Bruker X8 APEXII CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.877, \ T_{\max} = 0.976$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of
$wR(F^2) = 0.113$	independent and constrained
S = 1.05	refinement
4204 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
208 parameters	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

15630 measured reflections

 $R_{\rm int} = 0.026$

4204 independent reflections

3146 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

	0			
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H6\cdots O1$ $N1-H1\cdots O1^{i}$	0.83 (2) 0.86 (2)	2.08 (2) 2.04 (2)	2.7539 (17) 2.9029 (16)	138.3 (19) 172.9 (18)
······	1.0			

Symmetry code: (i) -x, -y + 2, -z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

We gratefully acknowledge Professor Dr Manfredo Hörner (Department of Chemistry, Federal University of Santa Maria, Brazil) for his help and support with the X-ray measurements, and CNPq/FAPERGS for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2252).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cava, M. P., Litle, R. L. & Napier, D. R. (1958). J. Am. Chem. Soc. 80, 2257-2263

Chohan, Z. H., Pervez, H., Rauf, A., Khan, K. M. & Supuran, C. T. (2004). J. Enzym. Inhib. Med. Chem. 19, 417-423.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, o3256 [doi:10.1107/S1600536811046605]

4-Methyl-N'-(2-oxoindolin-3-ylidene)benzene-1-sulfonohydrazide

A. de S. Fonseca, T. G. Storino, V. S. Carratu, A. Locatelli and A. B. de Oliveira

Comment

Isatin derivatives have a wide range of biological properties. For example, isatin-based hydrazones show pharmacological activity against bacteria and fungi (Chohan *et al.*, 2004). As part of our study of isatin derivatives, we report herein the crystal structure of isatin-3-tosylhydrazone. In the title compound (Fig. 1) the C—S—N(H)—N linkage is non-planar with the torsion angle being 65.12 (13)° and a tetrahedral environment suggests a sp^3 hybridization for the S atom. The title structure contains additionally two planar fragments. The mean deviations from the least squares planes for the isatin-derivative fragment C1/C2/C3/C4/C5/C6/C7/C8/N1/N2/N3/O1 and for the tolyl fragment C9/C10/C11/C12/C13/C14/C15 amount to 0.0813 (13)° for C2 and 0.0094 (16)° for C11 atoms, respectively, with a dihedral angle of 80.48 (3)°. The crystal packing is stabilized by intermolecular N—H…O (Table 1; N1—H1…O1ⁱ) and also by intramolecular N—H…O bonds (Table 1; N3—H6…O1) leading the isatin-3-tosylhydrazone dimers (Fig. 2). Symmetry code: (i)-*x*, -*y* + 2, -*z*.

Experimental

Starting materials were commercially available and were used without further purification. The synthesis was adapted from a procedure reported previously (Cava *et al.*, 1958). The glacial acetic acid catalyzed reaction of isatin (5 mmol) and *p*-toluenesulfonylhydrazine (5 mmol) in methanol (60 ml) was refluxed for 5 h. After cooling and filtering, crystals suitable for X-ray diffraction were obtained.

Refinement

H atoms attached to C atoms were positioned with idealized geometry and were refined isotropic with $U_{eq}(H)$ set to 1.2 times of the $U_{eq}(C)$ for the aromatic and 1.5 times of the $U_{eq}(C)$ for methyl H atoms using a riding model with C—H = 0.93 Å and C—H = 0.96 Å, respectively. H atoms attached to N atoms were located in difference Fourier maps and included in the subsequent refinement using restraints (N1—H1 = 0.86 (2) Å and N3—H6 = 0.83 (2) Å) with $U_{iso}(H) = 1.2$ times of the $U_{eq}(N)$. In the last stage of refinement, they were treated as riding on their parent N atoms.

Figures

Fig. 1. : The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 40% probability level.

4-Methyl-N'-(2-oxoindolin-3-ylidene)benzene-1-sulfonohydrazide

Crystal data

C ₁₅ H ₁₃ N ₃ O ₃ S	F(000) = 656
$M_r = 315.35$	$D_{\rm x} = 1.455 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 476 K
Hall symbol: -P 2ybc	Mo K α radiation, $\lambda = 0.71073$ Å
a = 14.9050 (3) Å	Cell parameters from 4508 reflections
b = 5.7849 (1) Å	$\theta = 2.9 - 26.0^{\circ}$
c = 17.8112 (3) Å	$\mu = 0.24 \text{ mm}^{-1}$
$\beta = 110.427 \ (1)^{\circ}$	T = 293 K
$V = 1439.18 (5) \text{ Å}^3$	Block, yellow
Z = 4	$0.56 \times 0.16 \times 0.10 \text{ mm}$

Data collection

Bruker X8 APEXII CCD area-detector diffractometer	4204 independent reflections
Radiation source: fine-focus sealed tube, Bruker X8 APEXII	3146 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
φ and ω scans	$\theta_{\text{max}} = 30.1^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -20 \rightarrow 21$
$T_{\min} = 0.877, T_{\max} = 0.976$	$k = -8 \rightarrow 5$
15630 measured reflections	$l = -25 \rightarrow 23$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.113$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0476P)^2 + 0.4436P]$ where $P = (F_o^2 + 2F_c^2)/3$
4204 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
208 parameters	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.44 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C3	0.11277 (11)	1.0172 (3)	0.32467 (9)	0.0394 (4)
H3	0.1057	1.1188	0.3627	0.047*
C11	0.53807 (13)	0.3670 (4)	0.17689 (12)	0.0566 (5)
H8	0.5908	0.3119	0.2187	0.068*
C12	0.54616 (13)	0.5683 (4)	0.13898 (12)	0.0527 (5)
C10	0.45279 (12)	0.2441 (3)	0.15401 (11)	0.0490 (4)
H7	0.4482	0.1086	0.1805	0.059*
C13	0.46719 (15)	0.6454 (4)	0.07640 (14)	0.0606 (5)
Н9	0.4717	0.7815	0.0501	0.073*
C14	0.38184 (13)	0.5253 (3)	0.05197 (12)	0.0540 (5)
H10	0.3296	0.5786	0.0094	0.065*
C15	0.63816 (15)	0.7038 (5)	0.16498 (16)	0.0760 (7)
H11	0.6298	0.8449	0.1901	0.114*
H12	0.6553	0.7391	0.1191	0.114*
H13	0.6881	0.6138	0.2023	0.114*
Н6	0.1551 (15)	0.431 (4)	0.0260 (12)	0.059 (6)*
H1	0.0168 (14)	1.043 (4)	0.0776 (12)	0.055 (6)*
S1	0.26748 (3)	0.16782 (7)	0.06008 (2)	0.03535 (12)
N3	0.18364 (9)	0.3472 (2)	0.06478 (8)	0.0352 (3)
N2	0.19062 (8)	0.4241 (2)	0.13897 (7)	0.0320 (3)
C8	0.08200 (10)	0.7533 (3)	0.07301 (8)	0.0305 (3)
01	0.06596 (8)	0.71841 (19)	0.00121 (6)	0.0382 (3)
C9	0.37519 (11)	0.3244 (3)	0.09182 (9)	0.0347 (3)
N1	0.05136 (9)	0.9330 (2)	0.10573 (7)	0.0329 (3)
C7	0.14177 (10)	0.6049 (2)	0.14176 (8)	0.0292 (3)
C1	0.08633 (10)	0.9203 (2)	0.19011 (8)	0.0295 (3)
O3	0.23997 (9)	0.1214 (2)	-0.02344 (7)	0.0511 (3)
C5	0.17706 (11)	0.6607 (3)	0.29508 (9)	0.0353 (3)
Н5	0.2115	0.5247	0.3121	0.042*
C2	0.07358 (11)	1.0743 (3)	0.24401 (9)	0.0351 (3)
H2	0.0400	1.2115	0.2272	0.042*
C6	0.13941 (10)	0.7169 (2)	0.21428 (8)	0.0298 (3)
C4	0.16212 (11)	0.8120 (3)	0.34970 (9)	0.0398 (4)
H4	0.1855	0.7755	0.4040	0.048*
O2	0.27543 (8)	-0.0145 (2)	0.11553 (8)	0.0481 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C3	0.0415 (8)	0.0398 (9)	0.0366 (8)	0.0005 (7)	0.0132 (7)	-0.0057 (7)
C11	0.0392 (9)	0.0670 (13)	0.0552 (11)	-0.0021 (9)	0.0060 (8)	-0.0073 (10)
C12	0.0403 (9)	0.0587 (12)	0.0630 (12)	-0.0114 (8)	0.0231 (8)	-0.0226 (10)
C10	0.0454 (9)	0.0506 (10)	0.0469 (10)	-0.0021 (8)	0.0109 (8)	0.0040 (8)
C13	0.0556 (12)	0.0479 (11)	0.0792 (15)	-0.0130 (9)	0.0247 (10)	0.0044 (10)
C14	0.0423 (9)	0.0485 (10)	0.0646 (12)	-0.0034 (8)	0.0105 (8)	0.0089 (9)
C15	0.0501 (12)	0.0853 (17)	0.0963 (18)	-0.0272 (12)	0.0300 (12)	-0.0305 (14)
S1	0.0344 (2)	0.0308 (2)	0.0424 (2)	-0.00097 (15)	0.01533 (16)	-0.00615 (15)
N3	0.0354 (7)	0.0364 (7)	0.0338 (7)	0.0062 (5)	0.0122 (5)	0.0009 (6)
N2	0.0333 (6)	0.0304 (6)	0.0335 (6)	0.0027 (5)	0.0133 (5)	0.0016 (5)
C8	0.0282 (6)	0.0315 (7)	0.0314 (7)	0.0007 (6)	0.0101 (5)	0.0068 (6)
01	0.0424 (6)	0.0417 (6)	0.0294 (5)	0.0047 (5)	0.0111 (4)	0.0051 (5)
C9	0.0322 (7)	0.0333 (8)	0.0411 (8)	-0.0007 (6)	0.0158 (6)	-0.0063 (6)
N1	0.0360 (6)	0.0308 (6)	0.0313 (6)	0.0080 (5)	0.0109 (5)	0.0087 (5)
C7	0.0283 (6)	0.0292 (7)	0.0303 (7)	0.0008 (5)	0.0103 (5)	0.0059 (6)
C1	0.0287 (6)	0.0283 (7)	0.0317 (7)	0.0007 (5)	0.0107 (5)	0.0053 (6)
O3	0.0516 (7)	0.0557 (8)	0.0466 (7)	-0.0074 (6)	0.0177 (6)	-0.0220 (6)
C5	0.0342 (7)	0.0371 (8)	0.0319 (7)	0.0068 (6)	0.0081 (6)	0.0063 (6)
C2	0.0364 (7)	0.0288 (7)	0.0400 (8)	0.0040 (6)	0.0134 (6)	0.0024 (6)
C6	0.0288 (6)	0.0295 (7)	0.0315 (7)	0.0033 (5)	0.0109 (5)	0.0036 (6)
C4	0.0397 (8)	0.0460 (9)	0.0293 (7)	0.0023 (7)	0.0066 (6)	0.0014 (7)
O2	0.0449 (6)	0.0336 (6)	0.0689 (8)	0.0029 (5)	0.0239 (6)	0.0083 (6)

Geometric parameters (Å, °)

C3—C4	1.385 (2)	S1—N3	1.6488 (13)
C3—C2	1.389 (2)	S1—C9	1.7560 (15)
С3—Н3	0.9300	N3—N2	1.3636 (17)
C11—C12	1.372 (3)	N3—H6	0.83 (2)
C11—C10	1.388 (3)	N2—C7	1.2853 (18)
С11—Н8	0.9300	C8—O1	1.2329 (17)
C12—C13	1.383 (3)	C8—O1	1.2329 (17)
C12—C15	1.505 (3)	C8—N1	1.3471 (19)
С10—С9	1.373 (2)	C8—C7	1.5060 (19)
С10—Н7	0.9300	N1—C1	1.4103 (18)
C13—C14	1.380 (3)	N1—H1	0.86 (2)
С13—Н9	0.9300	C7—C6	1.456 (2)
C14—C9	1.383 (2)	C1—C2	1.371 (2)
C14—H10	0.9300	C1—C6	1.3991 (19)
C15—H11	0.9600	C5—C4	1.383 (2)
C15—H12	0.9600	C5—C6	1.3886 (19)
С15—Н13	0.9600	С5—Н5	0.9300
S1—O2	1.4212 (12)	С2—Н2	0.9300
S1—O3	1.4239 (12)	C4—H4	0.9300

C4—C3—C2	121.40 (15)	S1—N3—H6	120.1 (14)
С4—С3—Н3	119.3	C7—N2—N3	116.77 (12)
С2—С3—Н3	119.3	O1—C8—N1	127.08 (13)
C12-C11-C10	121.27 (18)	O1—C8—N1	127.08 (13)
С12—С11—Н8	119.4	O1—C8—C7	126.55 (14)
С10—С11—Н8	119.4	O1—C8—C7	126.55 (14)
C11—C12—C13	118.32 (17)	N1—C8—C7	106.37 (12)
C11—C12—C15	121.2 (2)	C10-C9-C14	120.46 (16)
C13—C12—C15	120.5 (2)	C10—C9—S1	120.21 (13)
C9—C10—C11	119.39 (18)	C14—C9—S1	119.30 (13)
С9—С10—Н7	120.3	C8—N1—C1	111.45 (12)
С11—С10—Н7	120.3	C8—N1—H1	122.9 (13)
C14—C13—C12	121.56 (19)	C1—N1—H1	125.6 (13)
С14—С13—Н9	119.2	N2—C7—C6	125.84 (13)
С12—С13—Н9	119.2	N2—C7—C8	127.94 (13)
C13—C14—C9	118.99 (18)	C6—C7—C8	106.08 (12)
C13-C14-H10	120.5	C2—C1—C6	122.19 (13)
С9—С14—Н10	120.5	C2—C1—N1	128.49 (13)
C12—C15—H11	109.5	C6—C1—N1	109.32 (12)
C12—C15—H12	109.5	C4—C5—C6	118.32 (14)
H11-C15-H12	109.5	С4—С5—Н5	120.8
С12—С15—Н13	109.5	С6—С5—Н5	120.8
H11—C15—H13	109.5	C1—C2—C3	117.32 (14)
H12—C15—H13	109.5	С1—С2—Н2	121.3
O2—S1—O3	120.64 (8)	С3—С2—Н2	121.3
O2—S1—N3	108.22 (7)	C5—C6—C1	119.77 (13)
O3—S1—N3	102.99 (7)	C5—C6—C7	133.54 (13)
O2—S1—C9	108.30 (7)	C1—C6—C7	106.69 (12)
O3—S1—C9	109.34 (8)	C5—C4—C3	120.90 (14)
N3—S1—C9	106.44 (7)	С5—С4—Н4	119.5
N2—N3—S1	116.86 (10)	С3—С4—Н4	119.5
N2—N3—H6	117.5 (14)		
C10-C11-C12-C13	-0.7 (3)	N3—N2—C7—C6	-179.42 (13)
C10-C11-C12-C15	178.77 (19)	N3—N2—C7—C8	-4.3 (2)
C12-C11-C10-C9	0.5 (3)	O1—C8—C7—N2	4.0 (2)
C11—C12—C13—C14	0.1 (3)	O1—C8—C7—N2	4.0 (2)
C15-C12-C13-C14	-179.4 (2)	N1—C8—C7—N2	-174.84 (14)
C12-C13-C14-C9	0.7 (3)	O1—C8—C7—C6	179.91 (14)
O2—S1—N3—N2	51.10 (13)	O1—C8—C7—C6	179.91 (14)
O3—S1—N3—N2	179.90 (11)	N1—C8—C7—C6	1.06 (15)
C9—S1—N3—N2	-65.12 (13)	C8—N1—C1—C2	177.47 (14)
S1—N3—N2—C7	162.65 (11)	C8—N1—C1—C6	-2.60 (16)
N1—C8—O1—O1	0.00 (10)	C6—C1—C2—C3	-2.3 (2)
C7—C8—O1—O1	0.00 (14)	N1-C1-C2-C3	177.61 (14)
C11—C10—C9—C14	0.3 (3)	C4—C3—C2—C1	-0.5 (2)
C11—C10—C9—S1	178.32 (14)	C4—C5—C6—C1	-1.2 (2)
C13—C14—C9—C10	-0.9 (3)	C4—C5—C6—C7	178.95 (15)
C13—C14—C9—S1	-178.95 (16)	C2—C1—C6—C5	3.2 (2)
O2—S1—C9—C10	8.34 (16)	N1—C1—C6—C5	-176.70 (13)

supplementary materials

O3—S1—C9—C10	-124.90 (15)	C2-C1-C6-C7	-	-176.92 (13)
N3—S1—C9—C10	124.50 (14)	N1-C1-C6-C7		3.15 (15)
O2—S1—C9—C14	-173.62 (14)	N2-C7-C6-C5		-6.7 (3)
O3—S1—C9—C14	53.14 (16)	C8-C7-C6-C5		177.26 (16)
N3—S1—C9—C14	-57.46 (15)	N2-C7-C6-C1		173.44 (14)
O1—C8—N1—C1	-177.97 (14)	C8-C7-C6-C1		-2.56 (15)
O1—C8—N1—C1	-177.97 (14)	C6-C5-C4-C3		-1.5 (2)
C7—C8—N1—C1	0.88 (16)	C2-C3-C4-C5		2.4 (3)
Hydrogen-bond geometry (Å, °) D—H···A N3—H6···O1 N1—H1···O1 ⁱ Symmetry codes: (i) $-x$, $-y+2$, $-z$.	<i>D</i> —Н 0.83 (2) 0.86 (2)	H…A 2.08 (2) 2.04 (2)	<i>D</i> … <i>A</i> 2.7539 (17) 2.9029 (16)	<i>D</i> —H··· <i>A</i> 138.3 (19) 172.9 (18)

